Case report - CHD and ECM

JACOBSEN SYNDROME - PRENATAL AND POSTNATAL PHENOTYPIC CHANGES - CASE REPORT AND REVIEW

Authors: Paula Wildner¹, Maria Respondek-Liberska^{2,3}

¹Student of Medical University of Lodz, ²Department of Fetal Cardiology Research Hospital Polish Mother's Memorial Hospital, ³Department of Diagnoses and Prevention of Fetal Malformations Medical University of Łódź

PRENAT CARDIO. 2014 DEC;4(4):28-35 **DOI 10.12847/12144**

gestation revealed a karyotype of 46,XY,del(11)(q23)(Genetic Depart-

ment in Wroclaw Medical Univer-

sity). The patient was informed

about the availability of termination

of pregnancy and the indications for

fetal echocardiography if continued;

she declined termination. At 20 wks,

Abstract

11 deletion syndrome, Jacobsen syndrome (JBS), is a rare genetic abnormality associated with a wide variety of phenotypes. There are only a few case reports of JBS diagnosed prenatally, however majority resulting in termination of pregnancy. We present for the first time a prenatal diagnosis of JBS with congenital heart defect common arterial trunk type I (CAT) and the changing phenotype during fetal and postnatal life.

Key words: 11q deletion syndrome, fetal and neonatal phenotype, common arterial trunk, genetic disorder

INTRODUCTION

Jacobsen syndrome (JBS; 11q deletion syndrome) is a contiguous gene syndrome due to a partial deletion of the long arm of chromosome 11. It was first described in 1973 by Petra Jacobsen in a family with an unbalanced 11:21 translocation1. The

incidence is estimated at 1:100000, with female to male ratio 2:1. More than 200 cases have been reported^{2,3}, with only a few diagnosed prenatally (table 1)4-13, and none of them covered a long-term observation. Congenital heart disease affects approximately 56% of JBS patients².

We report a case of Jacobsen syndrome with common arterial trunk (CAT) type I monitored during fetal life and infancy, paying attention to changes in the phenotype over time.

CASE

A 35-year-old woman, gravida 2, para 1, was evaluated 8 months after delivery of a healthy child. The family history was unremarkable. The patient admitted flu-like symptoms and vaginal discharge in the 1st trimester. The ultrasound screening scan at 12 weeks showed a NT of 2,2 mm for CRL 61,0 mm. The mother's serum screening test showed a positive result for Down syndrome, with a DSR of 1/8. Genetic amniocentesis performed at 15 weeks'

How to Cite this Article:

Wildner P, Respondek-Liberska, M.: Jacobsen syndrome - prenatal and postnatal phenotypic changes - case report and review. Prenat Cardio. 2014 Dec;4(4):28-35

obstetric ultrasound scan showed lemon sign of the fetal calvarium and low-set ears. Heart defect was suspected. The woman was referred to our tertiary center for further evaluation of

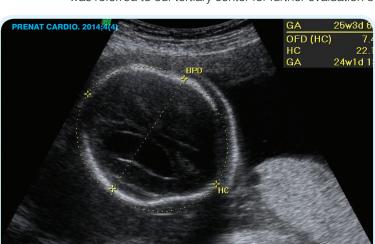


Figure 1. Fetal head at 24th week of gestation with unilateral ventriculomegaly and trigonocenhaly

Corresponding author: Maria Respondek-Liberska, majkares@uni.lodz.pl

Author, year	Gestation of amniocentesis (wks)	Karyotype	Course of pregnancy	Delivery/ termination of pregnancy (wks)	Postnatal outcome
McClelland et al., 1998	20	46,XX,del(11)(q23)	20 wks NT	24 TOP	-
Porter et al., 1999	15	46,XY,del(11)(q24.2)/46,XY	11 wks NT	TOP	-
Chao et al., 2001	19	46,XX,der(11)t(11;18) (q24;q21.3)		23 TOP	-
Chen et al., 2001	20	46,XX,del(11)(q23)	20 wks right duplex renal system, pyelectasis, bilateral cleft lip and palate	TOP	-
Baena et al., 2003	20	del(11q)	Diaphragmatic hernia	TOP	-
Baena et al., 2003	20	del(11q)	HLHS		Neonatal death
Chen et al., 2004 Case 1	20	46,XY,del(11)(q24.2)	18 wks serum-screening test positive for neural tube defects 1/225	24 TOP	
ouse r			22 wks short femurs, short humeri, overlapping of the toes		
Chen et al., 2004	18	46,XX,del(11)(q24.1)	No evident abnormalities on US	20 TOP	-
Case 2					
Boehm et al., 2006	17	46,XX,del(11)(q23)	17 wks oligohydramnios, reduced movements of the fetus	20 TOP	
			20 wks cerebral ventricular dilatation, IUGR		
Sanz-Cortes et al., 2007	20	46,XX,del(11)(q23)	20 wks calyceal and pelvic dilatation in the left kidney,	21 TOP	-
			facial dysmorphism 3D		
Vaduga et al., 2007	21	46,XY[16]/46,XY,del(11) (q23)[3]	21 wks serum-screening test positive for Down syndrome 1/78	32 TOP	-
			25 wks polyhydramnios, macrocephaly, facial dysmorphism, bilateral pyelectasis, small stomach size		
			Umbilical cord blood sampling: Paris- Trousseau syndrome		
Kato et al., 2014	after 29	46,XX,del(11)(q24)	27 wks IUGR	38 CS	Spina bifida,
			29 wks cleft lip	2282g	Limb dystonia, Hydronephrosis,
				Apgar 8/9	Cleft lip, Anemia, Low platelets, AV insuff.,
					Ear ossicle anomaly

Table 1. Literature data on prenatal diagnostics of JBS4-13

congenital malformations. Genetic ultrasound and fetal echocardiography were performed 5 times: at the 25, 31, 36 and twice at 39 weeks' gestation.

Atypical skull and CNS were difficult to interpret in every examination including retrospective evaluation, possibly due to microcephaly (Fig.1, 2, 3). Neonatal brain MRI scan showed a small right hemisphere with severe hypoplasia of the parietal and occipital lobes, unilateral lissencephaly and an assymetrical undilated ventricular system (Fig.4).

Despite the known genetic syndrome there were no evidence of prenatal facial dysmorphism on 3D surface rendering (Fig5/6). Abnormal features of the fetal face were also not evident in the immediate neonatal period (Fig.7).

Figure 2. Fetal head at 31st week of gestation. Trigonocephaly

Wks Gestation	24	31	36	38	Neonate
Biometry	Normal	Normal	SGA	SGA	
Central Nervous System	Trigonocephaly Mild unilateral ventriculomegaly Partial agenesis of the corpus callosum	Trigonocephaly No unilateral ventriculomegaly Microcephaly	Trigonocephaly Mild unilateral ventriculomegaly	Trigonocephaly Mild unilateral ventriculomegaly Mild hemispheric asymmetry	Small right hemisphere, lissencephaly Ventricular system not dilated, assymetrical
Face in 3D	No anomalies		No anomalies, prominent ears	No evident anomalies	Thickened frontal suture, narrow BPD, broad nasal bridge, deep set eyes
Heart anatomy	TAC	TAC	TAC	TAC	TAC type I
	A:V 1:1	A:V 1:1	A:V relations normal	relations normal 1: 2	
	VSD 5mm	VSD 5mm	VSD 5mm	VSD 5mm	
Functional anomalies	Tricuspid regurgitation	Tricuspid regurgitation	No TR Septum hypertrophy,	No TR Septum hypertrophy, Insufficieny of the common valve	Common valve insuff
CVPS	8	8	10	10	-
Thymus	Not seen	Difficult to assess	L-9cm, 26 x 15x 12mm	L-9cm, 26 x 15 x 12mm	Normal size
Umbilical cord	Normal flows	Normal flows	Normal flows,	Normal flows,	-
(3 vessels)			Long cord, Peripheral umbilical cord insertion	Long cord, Peripheral umbilical cord insertion	
AFI	21	24	20	20	-

Table 2. Phenotypic changes in JBS patient during fetal (25, 31, 36 and 38 weeks' gestation) and neonatal period

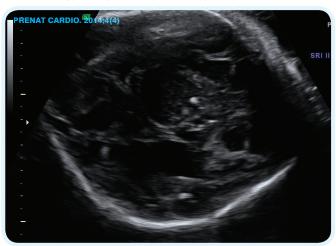


Figure 3. Fetal head at 38th week of gestation with asymmetrical ventriculomegaly and trigonocephaly

On the 3rd day of postnatal life neurologic examination revealed dysphagia. Muscle tone was normal. Over the following weeks the newborn developed a thickened frontal suture, narrow BPD, broad nasal bridge and deep set eyes (Fig 8).

The prenatal four chamber view of the heart showed a normal interatrial septum with a long FO valve flap. At 24 wks the atrium to ventricle size ratio was 1:1. There was a mild functional tricuspid insufficiency (Fig.9). Left and right diastolic dysfunction and pericardial effusion of 3 mm were observed. A 5 mm outlet type VSD was

Figure 4. Neonatal MRI 10 days later

detected. There was a single arterial vessel arising above it, bifurcating. One branch, after giving 3 cranial vessels, formed the descending aorta. The other branch split in two, in the shape of a "Y", and the diagnosis of common

Figure 5. Fetal face at 38th week of gestation

Figure 6. Neonate during the 1st day of life (photo with parents permission)

arterial trunk (CAT) type I was made (Fig.10). The fetus was given 8 points on the cardiovascular performance score (CVPS).

At 36 weeks' gestation a spontaneous hemodynamic improvement occurred. Ventricular contractility was 37% and 50% for the right and left ventricle, respectively. Tricuspid insufficiency, pericardial effusion and AV disproportion subsided. A mild insufficiency of common semilunar valve appeared. Cardiac hypertrophy - interventricular septum thickness 6 mm - was diagnosed, and the CVPS increased to 10 points (table 2). The AFI remained mildly increased at the level of 20-24 cm. The umbilical cord had a marginal attachment and was looping, which was described as 'garter on the inferior limb' and 'tie on the belly'.

At 39 weeks' gestation, cesarean section was performed due to abnormal CTG. A baby boy, Apgar 7 (pH 7.3), weighing 2670g was breathing on his own. Due to coagulopathy (PLT 34-42 000/µl) he was given FFP.

Neonatal echocardiography and angioCT confirmed prenatal diagnosis of TAC type I (Fig. 11). Pulmonary artery banding was performed on the 26th day of life. The boy was extubated 3 days after the procedure. At the age of 5 weeks the infant was stable gaining weight (3600) and discharged home.

DISCUSSION

Case reports in literature mainly present JBS patients diagnosed late in childhood due to neurological symptoms. Psychomotor retardation is observed in 97%¹⁴. Brain MRI scanning shows abnormalities in 51%². The most common are agenesis of the corpus callosum, cerebellar hypoplasia, pachygyria, and ventricular dilation^{15,16}. White matter abnormalities, interpreted as delay of myelinization¹⁹, are also common^{17,18}. Coexistence of 11q deletion and periventricular nodular heterotopia has been

described20. JBS is associated with ADHD, schizophrenia and bipolar affective disorder^{21,22}. About 2/3 of cardiac defects in JBS are VSD and left-sided obstructive lesions: valvular, HLHS, Shone's syndrome². Conotruncal anomalies, which are relatively rare in this condition, are probably caused by deletion of ADAMTS8, which is involved in regulation of angiogenesis^{23,24}. 11q23 qter contains approximately 342 genes. The majority (85%) of JBS cases are caused by a de novo deletion. Other common causes are translocation and ring chormosome^{1,15,26}. About 10% are due to extensive expansion of CGG repeats at the FRA11B27. With a broad spectrum of phenotypic features

(table 3), only half of patients are diagnosed before the age of 1¹⁴. Table 4 presents candidate genes for phenotypic characters in JBS.

Usual postnatal features include ocular hypertelorism, downslanting palpebral fissures, strabismus, palpebral ptosis, flat nasal bridge, thin upper lip, trigonocephaly, small low set ears and retrognathia. So far evolution in prenatal and postnatal phenotype has been described only in Apert syndrome⁴³.

The haemodynamic mild changes in the fetal heart (tricuspid insufficiency, pericardial effusion) with spontaneous regression were not significant and might have been related to maternal viral infection in the first half of pregnancy.

Figure 7. Infant on 37th day (after cardiac surgery – banding of the pulmonaryartery). Photo with parents' permission; Cardio SurgeryDepartment Polish Mother's Research Institute, Chief: Prof. J. Moll

Figure 8. Fetal heart at 24th week of gestation: the 4 chamber view with tricuspid valve regurgitation and atria: ventricles relations 1:1

PRENAT CARDIO. 2014;4	(4)			
PRENAT CARDIO. 2014;4	4)			
	/			
- A				
			-3	
		THE RESERVE		- 4
				重
-41 cm/s				
				3
		-		
	700000			

Group of symptoms	Common symptoms
Neurologic 14,15,16,17,18,20	Psychomotor retardation, corpus callosum agenesis, cerebellar hypoplasia, pachygiria, ventricular dilatation, abnormalities of the white matter, periventricular nodular heterotopia
Psychiatric ^{21,22}	ADHD, schizophrenia, bipolar affective disorder
Cardiac ¹⁴	VSD, left heart defects
Haematologic ^{28,29,30,31,32}	Thrombocytopenia/ Paris-Trousseau syndrome
Ophthalmologic ³³	Hypertelorism, epicanthal fold, ptosis, down- slanting fissures, strabismus, ocular coloboma, retinal vascular tortuosity, refractive error
Otolaryngologic ¹⁴	Hearing deficits
Endocrine ³⁴	IGF-1, TSH deficiency
Orthopedic ^{2,20,35,36}	Transverse limb reduction defect, hand and foot abnormalities
Gastrointestinal ¹⁴	Pyloric stenosis
Genitourinary and renal ¹⁴	Structural kidney defects, undescended testes

Table 3. Clinical symptoms of JBS

Genes	Phenotype
KIRREL3 ³⁷	Neurocognitive delay
KCNJ5 ³⁷	Long QT syndrome 13
B3GAT1 ³⁸	Affective bipolar disorder
BSX ³⁹	Cognitive impairment
NRGN ³⁹	Auditory attention deficit
ADAMTS8 ²³	Conotruncal heart defect
FEZ1, RICS ²³	Abnormalities of the white matter
KCNJ1 ²³	Antenatal Bartter syndrome type 2
TECTA ⁴⁰	Neurosensorial deafness
FLI-1 ⁴¹	Paris-Trousseau Syndrome
BARX-2 ⁴²	Facial dysmorphism, craniosynostosis
ETS1 ²⁰	Transverse limb reduction defect

Table 4. Candidate genes for JBS features

In this report we document the value of prenatal longitudinal ultrasound monitoring as an additional diagnostic tool, as compared with single cross sectional evaluation (Fig. 12, 13). We also stress that 3D of ultrasound of the fetal face may have less diagnostic value in comparison with echocardiographic findings in confirming structural defects in a genetic syndrome.

Postnatal JBS phenotype may resemble Noonan, Turner or Kabuki syndrome and neonatal thrombocytopenia is often attributed to sepsis. Making a diagnosis of JBS requires a cytogenetic test².

Figure 9. Fetal heart in long axis view with truncus arteriosus

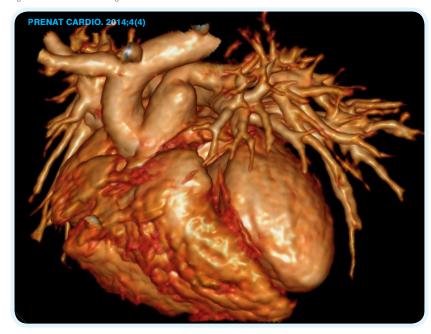


Figure 10. Neonatal angio CT before cardiac surgery (kindess of support from Radiology Department of our Institute)

CONCLUSION

We report the first case of Jacobsen syndrome describing, in addition to prenatal cytogenetic diagnostics, longitudinal observation in the second half of pregnancy and the early neonatal period: the fetal head, face, heart, biometry and postnatal observations demonstrate the changes in CNS and craniofacial phenotype.

References:

- 1. Jacobsen P, Hauge M, Henningsen K, Hobolth N, Mikkelsen M, Philip J.: An (11;21) translocation in four generations with chromosome 11 abnormalities in the offspring. A clinical, cytogenetical, and gene marker study. Hum Hered 1973, 23: 568-585
- 2. Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C.: The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet 2004; 129A: 51-61
- 3. Pivnick EK, Velagaleti GV, Wilroy RS, Smith ME, Rose ME, Tipton RE, Tharapel AT.: Jacobsen Syndrome: Report of a patient with severe eye anomalies, growth hormone seficiency and hypotiroidism associated with deletion 11 (q23q25) and review of 52 cases. J Med Genet 1996, 33: 772-778
- 4. McClelland SM, Smith APM, Smith NC, Gray ES, Diack JSW, Dean JCS.: Nuchal thickening in Jacobsen syndrome. Ultrasound Obstet Gynecol 1998, 12: 280–282
- 5. Porter S, Wilson E, Tyler X, Warren R, Ffrench-Constant C, Pearson J.: A case of discordant related abnormal karyotypes from chorionic villi and amniocytes. Prenat Diagn 1999, 19: 887–890
- 6. Chao M-C, Yang S-Y, Chang Y, Huang Y-W, Liu T-C, Lee J-P, and Chen B-H: Prenatal diagnosis of der (11) t (11;18) (q24;q21.3) due to paternal balanced translocation and both parents are carriers of -thalassemia-1- a case report. Kaohsiung

J Med Sci 2001, 17: 430-436

- 7. Chen CP, Chern SR, Tzen CY, Lee MS, Pan CW, Chang TY, Wang W.: Prenatal diagnosis of de novo distal 11q deletion associated with sonographic findings of unilateral duplex renal system, pyelectasis and orofacial clefts. Prenat Diagn 2001, 21, 317–320
- 8. Baena N, De Vigan C, Cariati E, Clementi M, Stoll C, Caballin MR, Guitart M.: EUROSCAN Working Group: Prenatal detection of rare chromosomal autosomal abnormalities in Europe. Am J Med Genet 2003, 118A: 319–327

- 9. Chen CP, Chern SR, Chang TY, Tzen CY, Lee CC, Chen WL, Chen LF, Wang W.: Prenatal diagnosis of the distal 11q deletion and review of the literature. Prenat Diagn 2004, 24 (2): 130-6
- 10. Boehm D, Laccone F, Burfeind P, Herold S, Schubert C, Zoll B, Männer J, Pauer HU, Bartels I.: Prenatal diagnosis of a large de novo terminal deletion of chromosome 11q. Prenat Diagn 2006, 26 (3): 286-90
- 11. Sanz-Cortes M, Raga F, Bonilla-Musoles F.: Prenatal diagnosis of a 11q deletion syndrome associated with unilateral hydronephrosis diagnosed by 3D ultrasound examination. Prenat Diagn 2007, 27 (12): 1158-60
- 12. Valduga M1, Cannard VL, Philippe C, Romana S, Miton A, Droulle P, Foliguet B, Lecompte T, Jonveaux P.: Prenatal diagnosis of mosaicism for 11q terminal deletion. Eur J Med Genet 2007, 50 (6): 475-81
- 13. Kato T, Mizuno S, Kurosawa K, Suzuki S, Niimi T, Natsume N.: Jacobsen syndrome associated with cleft lip: A patient report and review. J Oral Maxillofac Surg Med Pathol 2014
- 14. Mattina T, Perrotta CS, Grossfeld P.: Jacobsen syndrome. Orphanet J Rare Dis 2009, 7: 4-9
- 15. Penny LA, Dell'Aquila M, Jones MC, Bergoffen J, Cunnif C, Fryns JP, Grace E, Graham JM Jr, Kouseff B, Mattina T, Syme J, Voullaire L, Zelante L, Zenger-Hain J, Jones OW, Evans GA.: Clinical and molecular characterization of patients with distal 11q deletion. Am J Hum Genet 1995, 56: 676-683
- 16. Lin JH, Hou JW, Teng RJ, Tien HF, Lin KH.: Jacobsen distal 11q deletion syndrome with myelodysplatic change of haemopoetic cells. Am J Med Genet 1998, 75: 341-344
- 17. Leegte B, Kerstjens-Frederikse WS, Deelstra K, Begeer JH, van Essen AJ.: 11q- syndrome: three cases and a review of the literature. Genet Couns 1999, 10 (3): 305-13
- 18. Wardinsky TD, Weinberger E, Pagon RA, Clarren SK, Thuline HC.: Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter. Am J Med Genet 1990, 35 (1): 60-3
- 19. Ono J, Harada K, Hasegawa T, Sakurai K, Kodaka R, Tanabe Y, Tanaka J, Igarashi T, Nagai T, Okada S.: Central nervous system abnormalities in chromosome deletion at 11q23. Clin Genet 1994, 45(6): 325-9
- 20. So J, Stockley T, Stavropoulos DJ.: Periventricular nodular heterotopia and transverse limb reduction defect in a woman with interstitial 11q24deletion in the Jacobsen syndrome region. Am J Med Genet A 2014, 164 A (2): 511-5
- 21. Neavel CB, Soukup S.: Deletion of (11) (q24.2) in a mother and daughter with similar phenotypes. Am J Med Genet 1994, 53: 321-324

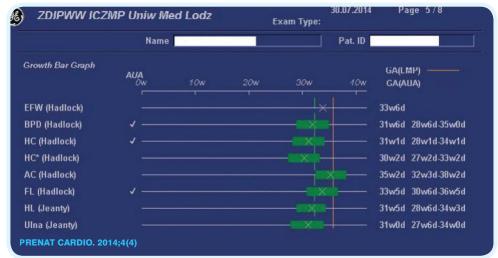


Figure 11. Fetal biometry suggesting microcephaly



Figure 12. Fetal biometry during the second half of gestation

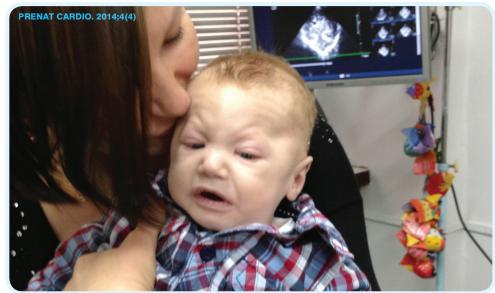


Figure 13. Our patient with his mom at 3 months of age (photo with parents permission). On the wall behind his head the last transfonatell scan on TV screen

- 22. Böhm D, Hoffmann K, Laccone F, Wilken B, Dechent P, Frahm J, Bartels I, Bohlander SK.: Association of Jacobsen Syndrome and bipolar affective disorder in a patient with a de novo 11q terminal deletion. Am J Med Genet 2006, 140 (4): 378-382
- 23. Tyson C, Qiao Y, Harvard C, Liu X, Bernier FP, McGillivray B, Farrell SA, Arbour L, Chudley AE, Clarke L, Gibson W, Dyack S, McLeod R, Costa T, Vanallen MI, Yong SL, Graham GE, Macleod P, Patel MS, Hurlburt J, Holden JJ, Lewis SM, Rajcan-Separovic E.: Submicroscopic deletions of 11q24–25 in individuals without Jacobsen syndrome: re-examination of the critical region by high-resolution array-CGH. Mol Cytogenet 2008, 1(1): 23
- 24. Dunn JR, Reed JE, du Plessis DG, Shaw EJ, Reeves P, Gee AL, Warnke P, Walker C.: Expression of ADAMTS-8, a secreted protease with antiangiogenic properties. is downregulated in brain tumours. Br J Cancer 2006. 94: 1186-1193
- 25. Edelmann L, Spiteri E, McCain N, Goldberg R, Pandita RK, Duong S, Fox J, Blumenthal D, Lalani SR, Shaffer LG, Morrow BE.: A common breakpoint on 11q23 in carriers of the constitutional t(11,22) translocation. Am J Hum Genet 1999. 65:1608-1616
- 26. Palka G, Verrotti A, Peca S, Mosca L, Lombardo G, Verrotti M, Morgese G.: Ring chromosome 11. A case report and review of the literature. Ann Genet 1986, 29(1): 55-58
- 27. Jones C, Müllenbach R, Grossfeld P, Auer R, Favier R, Chien K, James M, Tunnacliffe A, Cotter F.: Co-localisation of CCG repeats and chromosome deletion breakpoints in Jacobsen syndrome: evidence for a common mechanism of chromosome breakage. Hum Mol Genet 2000 9(8): 1201-1208
- 28. Krishnamurti L, Neglia JP, Nagarajan R, Berry SA, Lohr J, Hirsch B, White JG.: Paris-Trousseau syndrome platelets in a child with Jacobsen's syndrome. Am J Med Haematol 2001, 66: 295-299
- 29. Gangarossa S, Schiliró G, Mattina T, Scardilli S, Mollica F, Cavallari V.: Dysmegakaryopoietic thrombocytopenia in patients with distal chromosome 11q deletion. Blood 1996, 87 (11): 4915-4916
- 30. Favier R, Jondeau K, Boutard P, Grossfeld P, Reinert P, Jones C, Bertoni F, Cramer EM.: Paris-Trousseau syndrome: clinical, haematological, molecular data of ten new cases. Thromb Haemost 2003, 90: 893-897
- 31. White JG: Platelet storage pool deficiency in Jacobsen syndrome.: Platelets 2007, 18(7): 522-527
- 32. Bernaciak J, Szczauba K, Derwińska K, Wiceniowiecka-Kowalnik B, Bocian E, Sasiadek MM, Makowska I, Stankiewicz P, Smigiel R.: Clinical and molecular cytogenetic evaluation of a family with partial Jacobsen syndrome without thrombocytopenia caused by an approximately 5 Mb deletion del (11) (q24.3). Am J Med Genet A 2008 1, 146 A (19): 2449-54
- 33. Lee WB, O'Halloran HS, Grossfeld PD, Scher C, Jockin YM, Jones C.: Ocular findings in Jacobsen syndrome. J AAPOS 2004, 8(2):141-5
- 34. Haghi M, Dewan A, Jones KL, Reitz R, Jones C, Grossfeld P.: Endocrine abnormalities in patients with Jacobsen (11q-) syndrome. Am J Med Genet A 2004. 129 (1):62-63
- 35. Fujita H, Yanagi T, Kosaki R, Torii C, Bamba M, Takahashi T, Kosaki K.: Primary immunodeficiency in combination with transverse upper limb defect and anal atresia in a 34-year-old patient with Jacobsen syndrome. Am J Med Genet A 2010, 152A (4): 1033-5

- 36. von Bubnoff D, Kreiss-Nachtsheim M, Novak N, Engels E, Engels H, Behrend C, Propping P, de la Salle H, Bieber T.: Primary immunodeficiency in combination with transverse upper limb defect and anal atresia in a 34-year-old patient with Jacobsen syndrome. Am J Med Genet A 2004, 30, 126A (3): 293-8
- 37. Guerin A, Stavropoulos DJ, Diab Y, Chénier S, Christensen H, Kahr WH, Babul-Hirji R, Chitayat D.: Interstitial deletion of 11q-implicating the KIRREL3 gene in the neurocognitive delay associated with Jacobsen syndrome. Am J Med Genet A 2012, 158 A (10): 2551-6
- 38. Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T.: Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 2002, 277: 27227-27231
- 39. Coldren CD, Lai Z, Shragg P, Rossi E, Glidewell SC, Zuffardi O, Mattina T, Ivy DD, Curfs LM, Mattson SN, Riley EP, Treier M, Grossfeld P.: Chromosomal microarray mapping suggests a role for BSX and Neurogranin in neurocognitive and behavioural defects in the 11q terminal deletion disorder (Jacobsen syndrome). Neurogenetics 2009, 10, 89-95
- 40. Hughes DC, Legan PK, Steel KP, Richardson GP: Mapping of the alphatector in gene (TECTA) to mouse chromosome 9 and human chromosome 11: a candidate for human autosomal dominant nonsyndromic deafness. Genomics 1998, 48: 46-51
- 41. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstein A.: Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000, 13 (2): 167-177
- 42. Krasner A, Wallace L, Thiagalingam A, Jones C, Lengauer C, Minahan L, Ma Y, Kalikin L, Feinberg AP, Jabs EW, Tunnacliffe A, Baylin SB, Ball DW, Nelkin BD.: Cloning and chromosomal localization of the human BARX2 homeobox protein gene. Gene 2000, 250 (1–2): 171-180
- 43. Śmigiel R, Sąsiadek M, Zieliński A, Respondek Liberska M.: Odległe rokowanie w zespole Aperta w aspekcie rozpoznania prenatalnego opis przypadku genetycznego. Prenat Cardio 2011, 1 (1)

Authors and divison of work:

P. Wildner: literature search and first draft

M. Respondek-Liberska: concept of the manuscript, photos and final version of the manuscript

Conflict of interest: The authors declare no conflict of interest Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication